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Abstract. A quantum analogue of the classical transformations to the Birkhoff -Gustavson 
normal form is derived. With unitary transformations taking over the role of canonical 
transformations, we find a striking similarity to Lie transformations in the classical case. 
We suggest that the quantum normal form is identical to the Rayleigh-Schrodinger perturba- 
tion series and thus usually only asymptotic to the eigenvalues. The convergence question 
of both classical and quantum normal forms is discussed in some detail. 

1. Introduction 

An old problem in quantum mechanics is how to extract semiclassical approximations 
to eigenvalues of quantum operators from the classical observables. For separable 
systems, the JWKB method and for more general integrable systems, EBK quantisation 
provide the solutions. However, as is known today, most Hamiltonian systems are not 
integrable but instead show a divided phase space. Although it has been possible to 
extend the EBK procedure and variations thereof to elliptic islands, the general problem 
of how to treat chaotic regions remains unsolved. For a review see Percival (1977). 

One way around this difficulty was pointed out by Swimm and Delos (1979): instead 
of quantising the original non-integrable Hamiltonian they used integrable approxima- 
tions to it. From the many possibilities (see, e.g., Rice 1981, Lichtenberg and Lieber- 
mann 1983), they chose a truncated Birkhoff-Gustavson normal form around an 
equilibrium point (Birkhoff 1927, Gustavson 1966). The method has since been 
extended by Jaffi and Reinhardt (1982), Shirts and Reinhardt (1982) and Robnik 
(1984), typically yielding good agreement with exact quantum calculations for low 
lying states, the lowest ones being best approximated. An exception seems to be the 
work of Williams and Koonin (1982), but see the discussion in 0 5. 

Truncation of the transformation to normal form is necessary since it must diverge, 
for otherwise the original system would be integrable (Siege1 and Moser 1971). 
However, it is asymptotic, so the first few terms approximate trajectories of the full 
system quite accurately for short times (Duistermaat 1984). This hints at one reason 
for the success of the quantum calculations: if the density of states is written as a sum 
over periodic orbits (cf Berry and Tabor 1976), then numerical experience (cf Berry 
1983) shows that short time periodic orbits dominate at low energies. 

Another reason is the close connection to quantum mechanical perturbation theory, 
which we will develop in this paper. We will show that it is possible to define a 
quantum normal form with unitary transformations playing the role of the canonical 
transformations in classical mechanics. This form of perturbation theory is similar to 
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2962 B Eckhardt 

the Fouldy-Wouthuysen transformations in relativistic quantum theory (Bjorken and 
Drell 1964). The analogy between classical and quantum normal forms becomes 
evident, if the former are derived in a Lie algebra framework. It can then be shown 
that the classical normal form, suitably quantised, is the leading order (in a sense made 
clear below) of the quantum version. We will argue that the quantum normal form to 
order k is equivalent to kth order Rayleigh-Schrodinger perturbation theory. This 
brings up the question of convergence, which will be discussed in detail in Q 5. We 
merely point out that we expect the perturbation series to diverge, but that powerful 
resummation techniques might exist, allowing eigenvalues to be retrieved quite accur- 
ately (cf Simon 1982). It is an open question whether the classical normal form can 
be resummed to something meaningful (for preliminary results see Shirts and Reinhardt 
(1982)). 

After this work was completed we learned of the paper by Ali (1985) where the 
same connection is found, but no convergence questions are discussed. The outline 
of this paper is as follows: in 0 2 we present the Lie group version of canonical 
transformations and in § 3 we apply it to derive the Birkhoff-Gustavson normal form 
for classical Hamiltonians. In § 4 the quantum normal form is introduced. Convergence 
questions and the relationship to  Rayleigh-Schrodinger perturbation theory are dis- 
cussed in § 5. We conclude with a summary and a few remarks in 0 6. Applications 
to anharmonic oscillators in one and two dimensions are sketched in § §  3 and 4. 

2. Canonical transformations and Lie groups 

We begin with a description of canonical transformations in the context of Lie groups 
and the Lie algebra ofvector fields (Dragt and Finn 1976). For the differential geometry 
involved, see Abraham and Marsden (1981), Arnold (1978) or Thirring (1978). 

Let r be the 2N-dimensional phase space with symplectic coordinates (q ,  p )  = 
( q l  . . . q N ,  p1 . . . p N )  and non-degenerate 2-form d.R = Z Z l  dp, A dq,. The vector fields 
over r form a Lie algebra with the commutator as product structure. The Jacobi identity 

(1) 

one can associate a Hamiltonian vector 

rx, [ Y ,  Zll + [ y, [Z, XI1 + rz, [ X ,  y11= 0 
holds. 

field X, via 
With any smooth function f ( q ,  p )  on 

The action of X, on functions g yields the usual Poisson bracket: 

(xB)(q, P) = -{L gHq, PI. (3) 

d p l d s  = Xf’p (4) 

The solution of the system of ordinary differential equations 

with q ( s )  a 2N-dimensional vector of coordinate functions defines a flow on r. 
Formally, one may write 

d s )  = exP(sxf)P(o) ( 5 a )  

( 5 b )  = ( 1 + sx, + px; + . . . ) cp (0) 
where powers of vector fields are defined recursively. 
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The nomenclature becomes clear when one takes f = H, the usual Hamiltonian, for 
then (4) are Hamilton's equations of motion and the parameter s is ordinary time. 

Quite generally, the solutions to (4) generate one-parameter groups of canonical 
transformations. To first order in the parameter E this is verified easily. Let (Q, P) 
be the new coordinates, then 

and 

N N 

dR = dPn A dQn = c dp, Adqn+O(&*) 
n = l  n = l  

(7) 

is invariant. Thus, Hamiltonian vector fields generate canonical transformations and, 
as shown by Dragt and Finn (1976), any canonical transformation continuously 
connected to the identity ( E  = 0) can be obtained this way. The function S ( q ,  p )  is 
called the generator of the transformation. If Q = ( 4 ,  p )  and @ = (Q, P) denote the old 
and new coordinates, respectively, then one can write formally 

@ = exp( E X ~ ) Q  cp = exp(-&Xs)@ (8) 

where S' has the same functional form as S, but expressed in (Q, P) instead of (4, p ) .  
If S is independent of time, as we have tacitly assumed so far, Hamilton's equations 

of motion transform according to 

exp(-eXs) d@,ldt = XH exp(-&Xs)@ (9) 

or 

with the new vector field 

n times 

where the last equality follows from series expansion. A final simplification may be 
achieved by noting that from (3) and (1) one obtains 

IXS, x H l ( f )  = -x{S,H)(f) (12) 

so that the transformed Hamiltonian may be recovered directly: 

H'= C - { S ,  { S , .  . . { S ,  H } } .  
n = o  n! ~__z__i 

n times 

This is our starting point for the discussion of the Birkhoff-Gustavson normal form. 
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3. Normal forms in classical mechanics 

Normal forms for classical Hamiltonians around elliptic fixed points were extensively 
studied in Birkhoff (1927). Our presentation of resonant cases goes back to Gustavson 
(1966). Many of the references on semiclassical quantisation of the normal form 
contain a discussion of the classical case as well. 

Assume that the full Hamiltonian H has been expanded around one of its equili- 
brium points as 

X 

H = H o +  hkHk 
k=l 

where 

and the Hk are polynomials in (ql . . . q N ,  p1 . . . p N )  homogeneous 
Constants in H do not matter and linear terms can be absorbed 
coordinates. So this form is quite general. 

of degree k + 2 .  
by a change of 

We say Hk is in normal form, if it is a function of ( p f +  qf) alone, i.e. ~ p ~ ~ ~ ' ) ( p : +  
q l ,  . . . , p', +'&). Obviously, the normal forms for H, with n odd are identically zero, 
since (pi,  qi) should enter quadratically. 

It was Birkhoff's idea to find a sequence of canonical transformations bringing ever 
increasing orders of Hk to normal form, i.e. eliminating non-normal terms. 

For the first step (assuming HI is non-zero), consider equations (13) and (14) to 
O(A2)(& = A ) :  

2 

H'=Ho+A(Hl-{Sl, Ho})+O(A2).  (16) 

{SI, Ho}- HI = 0. (17) 

Since HI is of odd order, we need to find SI such that 

This is possible only if ( H , )  is in the range of the operator 9 = { * , Ho} with domain, 
for example, all smooth functions. 

Deferring the question of the existence of SI for a moment, let us proceed to the 
next step. We now start from 

H' = Ho + A *Hi + A 3 H ;  + O( A '). 

H" = Ho + A 2( H ;  - { S 2 ,  Ho}) + A H i  + O( A '). 

(18) 

Applying a canonical transformation with E = A 2  and generator S 2 ,  we obtain 

(19) 

This shows two things. First of all, the existence of S2 is again linked to the operator 
9, namely the non-normal parts of Hi have to be in the range of 9. Second, since 
Hj is not affected by the transformation, we can add a term AS3 to S,, thus obtaining 
a 'superconvergent' procedure. Without writing out the details, it should be clear that 
in the next step one can take E = A 4  and a generator S4+AS5+A2S6+A3S7, thus taking 
care of all terms up to order A 8 .  Here 'superconvergent' is used in agreement with 
standard nomenclature (Lichtenberg and Liebermann 1983) to refer to a procedure 
yielding normal form to order 2"' after m steps. JaffC and Reinhard (1982) call it the 
Birkhoff-van Vleck method. It does not imply convergence as a power series (see 0 5 ) .  
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Now we return to a discussion of the operator 9. To this end, we change to complex 
coordinates according to 

The Poisson bracket now becomes 

In these new coordinates, Hk is normal, if it depends on z:zn and powers thereof. 
The operator 9 becomes 

B = i  E w, (z:--z,-). a 
n = l  az: J Z ,  

It is now convenient to introduce multi-indices: 1 = ( I l  . , , I N )  denotes a vector of 
integers, (11 = N 1, and z' = z:  . . . z h .  Similarly for m and z * ~ .  Finally, 

N 
w l =  wnln. 

n = l  

Then 

i.e. monominals in z* and z are eigenfunctions of 9. 
The kernel of 9 contains all monomials with eigenvalue zero, the range those with 

non-zero eigenvalue. Thus, what is left over after the canonical transformations will 
will be in the kernel of 9. Obviously, normal monomials ( I  = m) are elements of 
ker 9. In systems with two or more degrees of freedom, it may happen that there is 
an integer resonance between the frequencies, i.e. there is a set of integers (jl . . . j,) 
not all zero such that 

N 

W J ,  = 0. (24) 
, = I  

Then the kernel is much larger and can be organised as follows. Let there be 
r (1s r < N )  relations of the form (24) (rth-order resonance) with integers 
(ill . . . j, N ) r  . . . , ( jrl . . . j r N ) .  Then one can define resonant monomials 

s = 1,. . . , r (25) K ,  = ~ $ 1 ' .  . , U?' 
with 

if j,, > 0 
U, = z, if j,, < 0 1:: if j,, = 0. 

Any element of ker 9 can now be written in the form 

C ~ ; ( Z ~ Z ~ ,  . . . , z : z ~ ) ( K ' +  K * ' )  
I 

where 1 = ( I l  . . . l r )  (Robnik 1984, Gustavson 1966). 

in the quantum case and will not be discussed further. 
The resonant case has only been included for completeness and for later reference 
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So assuming the unperturbed frequencies w, are not in resonance, we can completely 
solve the transformation problem. At each step of the approximation we have to solve 
an equation of the form 

(28) { s k ,  Ho) - Hk = (normal). 

If 

then, by (23), 

provides a solution. Here, the prime denotes omission of all terms with vanishing 
denominator. The requirement that S should not contain terms in ker 9 renders it 
unique. 

Example 1. One-dimensional oscillator 
Let 

H = f( p 2 +  q 2 )  + A q 4  

or, in’complex coordinates, 

H = z*z + A [ $ ( z * z ) ’ + ~ ( Z * ~ + ~ Z * ~ Z  +4Z*Z3+ z “ ) ]  (32) 

(33) = Ho+ A ( H ~ N  + HZR) 

where HZN = ;( z*z)’ is already in normal form. So the aim of the first transformation 
is to eliminate H ~ ~ .  We have, to o (A~) ,  

H ’ = H o + A [ H ~ N + H ~ R - { S ,  H0)1-A2[{S, H ~ N } + { S ,  H ~ R } - ~ { S ,  {s, &))I 
+A3[&S, {s, H ~ N ) ) + ~ S ,  {s, H2~))-b{s, {s, {s, HoI))I+O(A4). (34) 

If S is determined from 

{s, H O ) - H 2 R = O  (35) 

then we obtain 

H’ = Ho + A H2 D - A ’[ { s, H2 N } - f { s, H2 R }] 

+h3[4{s, {s, H ~ ~ ) ) + ~ s ~  {s, H ~ ~ I I I + ~ o ( A ~ ) .  (36) 

An argument similar to that following equation (19) shows that (35) contains the 
normal form of Hamiltonian (32) up to O(A4). With the solution of equation (35), 

(37) 

H = I + ~ A l ’ - ~ A 2 1 3 + ~ A 3 1 4 + O ( A 4 )  (38) 

~ = - l i ( l  4 qz *4+2 z *3  z-2z*Z3-:24) 

we finally obtain 

where 

I = z*z. 
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To obtain information about the convergence of (38), note that it is an algebraic way 
of expanding H in terms of the action I ,  defined by 

1 
257 

I = - f ( 2  E - q2 - 2Aq4)’/’ dq. (39) 

However, trajectories near the origin are bounded only for EA 3 -&, i.e. if A > 0 for 
all positive energies and for A < 0 only for those between zero and the tip of the barrier. 
Now AH is monotonic in AI, so we can expect (38) to converge for 

1~1\smin(1+,  I - )  (40) 
where 

(k - q2 F 2q4)‘l2 dq. 
27r 

The point to be made here is that a maximal radius of convergence for (38 )  is determined 
by the requirement that for both + A  and -A, trajectories have to be bounded. 

Example 2. Two-dimensional oscillator 
Let 

H = f @ i ( q :  +P:) +h(q :+p : )  + a (q:+ 4:) + Yq:q: 
or, in complex coordinates (z*, z, U*, U ) ,  

ff=Ho+H2,+H2R 

with 

Ha = w l z * z +  w2u*u  

HZN = :a ( z*z)’ + ( u * u ) ’ +  y( z*z)( u * u )  

H ~ R  = a a ( Z * 4 +  4Z*3Z + U * 4 +  4U*3U) 

+ i y (  z * ~  U *’+ z*’u2+ ~ z * z u * ~  + 2z*’u*u) +complex conjugate. 

Here, too, equations similar to (34)-(36) hold. The generator for the canonical 
transformation is given by 

+complex conjugate. (44) 
One sees that for this system the first generator is non-singular, if wI f w 2 .  Higher-order 
restrictions will only appear in higher orders. The result is 
H = w , I  +$a12 -l;i?cu213+ w ~ J + ~ ~ J ~ - ~ ; ~ ? c Y ~ J ~ +  yIJ 

- - I  3 f f Y  2 J--ZJ2-- 3aY y 2 (  --A ) I2J 
0 1  U2 4 w2 w : - w :  

where I = z*z, .I = u*u. For a discussion of convergence see 0 5. 
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4. Quantum mechanical normal form 

We now develop similar ideas in quantum mechanics. Assume we are given a Hamilton 
operator H, written for convenience using creation and destruction operators ut = 
( a : .  . . U ; ) ,  a = ( a , .  . . u N ) ,  

m 

H = Eo+ Ho+ hkHk 
k = l  

where 

and &(a+ ,  a )  are polynomials of degree S k S 2 .  
For reasons explained below they need not be homogeneous. Zero-point energies 

of the unperturbed harmonic oscillators have been absorbed in the constant Eo.  Here, 
we will ignore any ordering problems in quantising a classical normal form. For 
Hamiltonians of the form kinetic plus potential energy, as in our examples, they do 
not arise and the theory developed below is independent of the particular classical- 
quantum association. 

Our aim will be to approximate the eigenvalues of H in a simple manner, namely 
as polynomials in the number operators N,, = a;a,. So we say a quantum operator 
is in normal form if it is a function of N ,  alone. 

Spectra of self-adjoint operators are invariant under unitary transformations U, 
which may be written as U = e-' with some anti-self-adjoint operator s": s"' = -g. 

We have 

H = U t H U  (48) 

= e 3 H  e-' (49) 
or 

" 1  
n = O  n !  

H ' =  -[,?,[g ,..., [g, H I ] .  
v 

Note the similarity to equation (13). Much of the discussion in § 3, including the 
'superconvergent' method, can immediately be carried over, if one reads commutators 
instead of Poisson brackets. In particular, the existence of the operator S is linked to 
range questions of the operator 9 = [ - , Ho]. We have 

and 

9 ( a + l a m )  = w(Z- m)a+la". (52) 
So the kernel of 9 again contains normal forms with I =  m and, for the case of 
resonance, resonant monomials and powers thereof. 

There is one difference, though, arising from the fact that a+ and a do not commute. 
For definiteness we will require that in each monomial all creation operators are 
commuted to the left of destruction operators (normal ordering). In the final result, 
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however, normal forms are more conveniently expressed in powers of number operators, 
e.g. a a = N 4 - 6 N 3 + l l N 2 - 6 N ,  etc. +4 4 

We define a quantisation operator Q by the rule 

Q(z*Izm) = a+'am. (53) 

Then 
[ a + J a m ,  a + J ' a m ' ~  = Q ( { z * J z m  z*J '  m' , z 1) 

+ monomials of order L - 2, L - 4, L - 6, . . .1 (or 0) ( 54) 

where L = 1 + 1'+  m + " - 2 .  
Because of this, it is not possible, as it is in the classical case, to transform increasing 

orders of homogeneous polynomials to normal form. Instead, it is more like a perturba- 
tive expansion in A :  coefficients of increasing powers of A are transformed to normal 
form. However, within these coefficients, the leading power of the number operator 
is given correctly by the classical series, if quantised using (53). 

In the case of resonance, other monomials besides powers of number operators 
survive the transformation. As shown by Robnik (1984) degenerate quantum perturba- 
tion theory can then be applied. 

We conclude this section with a discussion of the quantum version of the examples 
of 0 3. Because of the similarity, we will be rather brief. 

Example 1 .  One-dimensional oscillator 
The quantum Hamiltonian for equation (31) is 

H = h ( a + a + ~ ) + $ A h 2 ( 2 a + a a + a + 2 a + a + 1 )  

+$Ah2(a+4+4a+3a +4a+a3 + a4+ 6 a T 2 + 6 a 2 ) .  

S = $ A f i ( + ~ + ~ +  2 d 3 a  - 2 a + a 3  -$a4+ 3 ~ + ~  - 3 ~ ' )  

( 5 5 )  

With the anti-self-adjoint operator 

(56) 
and an expansion like (36) we obtain 

H = h( N + 4) + $Ah2( N 2  + N + 4) -iA 2h3(34N3 + 51 N 2  + 5 9 N  + 21) 

+&A3h4(375N4+ 7 5 0 N 3 +  1416N2+ 1329N-t-333) + O(A4) (57) 
where N = a + a .  

Example 2. Two-dimensional oscillator 
The quantum analogue of model (42) is 

H = ; h ( w ,  + w 2 )  + Ho+ H 2 ~  4- H2R 

Ho = Awlaca + hw2bfb 

( 5 8 )  

(59a)  

with 

H2N = ; a h 2 ( a t a a + a +  + b'bb+b+ b'b+ 1 ) +  yfi2(a+a +$)(b'b+f) (59b) 

HZR = $ah2( 4at3a + 6 ~ + ~ +  b'4+4b+3b + 6b+2) 

+ f y h 2 (  a+2b+2 + a+'b2 + + bt2 + 2a+ab+'+ 2a+'b+b) 

+ Hermitian conjugate. (59c) 
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The anti-self-adjoint operator S is 

+ Hermitian conjugate. 

The final result is 

H = hw,( N +f) + hw2( M +f) + $ah(  N 2 +  M 2 +  N + M + 1) 

+ yh2( N + f )( M + f) 

[34( N 3  + M 3 )  + 51( N 2 +  M 2 )  + 59( N +  M )  +42] 
a 2 h 2  

8 
-- 

N + M - l )  

N - M )  (61) 

( 2 N +  1)[(2M+ 1 ) 2 +  11 3 a y h 2  3 a y h 2  -- ( 2 M +  1)[(2N+ 1 ) 2 +  11 -- 
8W 8w2 

32 ~2 o I - w ~  32(w1+ 4 

32 0 2  W I - W ~  32(w,- w2)  

-e(--*) 2 w  ( 2 N + 1 ) 2 ( 2 M + 1 ) -  3 y2h2  

--(-+A) y2h2 2 ( 2 N + 1 ) ( 2 M + 1 ) 2 -  3 y 2 h 2  

where N = a+a and M = b’b. 

5. Convergence of the series 

We begin with a discussion of the classical transformation. As is well known, conver- 
gence of the transformation to the Birkhoff -Gustavson normal form implies integrabil- 
ity. This is a non-generic property of Hamiltonian systems, so we typically expect the 
series to diverge and to be asymptotic at best. If convergent, it may have a natural 
radius of convergence because of changes in the topology of motion (bounded- 
unbounded), as seen in the first example in § 3. Similar things might happen for the 
two-dimensional oscillator, which is integrable for specific values of the parameters 
(Bountis et al 1982). However, even if the system is not integrable the series can be 
sensible to this change in topology. For sufficiently small A and energy, it can show 
the usual asymptotic behaviour, yielding reasonable approximations with a few terms 
before diverging, whereas for larger values it can be strongly divergent. This behaviour 
has apparently been observed by Williams and Koonin (1982). 

In quantum mechanics, the situation is more uniform: independent of the degrees 
of freedom the series is at best asymptotic. Roughly speaking, the series is dominated 
by the highest powers of operators and thus a change of sign in A can bring about 
qualitative changes in the spectrum from discrete to continuous. The following scaling 
argument for one-dimensional anharmonic oscillators can perhaps be generalised to 
cover normal forms as well (see Simon 1970, 1982, Reed and Simon 1978). 

Let 

H = i ( p ’ +  a x 2 )  + AX4 (62) 
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and let E,,(a, A )  denote the nth eigenvalue. Following Symanzik we set p ’ =  A”6p and 
x’ = A-’16x so that 

H ( a ,  A )  = A 1 / 3 H ( a A - 2 ’ 3 ,  1) (63) 

and 

E,,(l, A )  = A1/3E,,(A-2/3, 1). 

Now x4 is a singular perturbation to p 2  + x2, so regular perturbation theory in the sense 
of Kato-Rellich does not apply, but x2 is small compared with p 2  + x4, so the strong 
coupling expansion 

E,(1,A)=A”3(ao+alA-2’3+~2A-4/3+.  ..) (65) 

exists. From this one can deduce (Simon 1970) that E,,(l, A )  is not analytic at A =O.  
The normal forms derived in 0 4 are formal power series around this singularity, 

so they cannot be convergent. For this particular case and a few others, one can prove 
they are asymptotic. Moreover, Bore1 summation and Pad6 approximants allow to 
recover the exact eigenvalues (for a recent review see Simon 1982). 

To see the relationship to Rayleigh-Schrodinger perturbation theory, recall that 
asymptotic expansions are unique. So, if the unitary perturbation theory developed 
in 8 4 and standard perturbation theory are both asymptotic, they have to be identical 
since they approximate the same object. 

6. Summary and concluding remarks 

In this paper, we have established a very close connection between the Lie algebra 
version of the transformation to the Birkhoff-Gustavson normal form and unitary 
perturbation theory in quantum mechanics. Compared to the standard procedure used 
to achieve normal form in classical mechanics, this one is simpler and should be easier 
to program on computers capable of symbolic algebraic manipulations: the generator 
for the canonical transformation can be read off directly (no matrix inversion required) 
and the new Hamiltonian is obtained from a sequence of Poisson brackets. Moreover, 
a ‘superconvergent’, i.e. fast, procedure can be given. 

A quantum analogue is obtained if Poisson brackets are replaced by commutators. 
The resulting quantum normal form is equivalent to Rayleigh-Schrodinger perturbation 
theory. In each order of the parameter A, the coefficient of the leading power of the 
number operator is given correctly by the classical normal form if quantised using, for 
example, equation (53). 

Robnik (1984) suggested using 

Q ( ( z * z ) ’ )  =(uta+;)’  (66) 

for normal monomials. For the examples given above, this rule produces the quantum 
perturbative result up to O(A2) and up to a constant. 

Note that because of equation (59) problems with small denominators also appear 
in quantum mechanics. Results for anharmonic oscillators (Bender and Wu 1969) 
show, however, that they might be absorbed in the divergence of lower powers of 
number operators (for instance, the constants at each order of A diverge like CA%! 
with constants C and A ) .  
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We finally note an open problem. The quantum perturbation series can be resummed 
to yield the exact eigenvalue. It is not known whether the classical Birkhoff-Gustavson 
normal form can be resummed and to what it should converge. Preliminary data of 
Shirts and Reinhardt (1982) indicate that Pad6 approximants to the constant of motion 
derived from the normal form behave nicely. There might exist a connection to cantori 
as discussed by MacKay et a1 (1984), but it still needs to be worked out. 
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